INSTRUCTIONS TO CANDIDATES

• Write your session number in the boxes above.
• Do not open this examination paper until instructed to do so.
• Section A: answer all questions.
• Section B: answer all of the questions from one of the options.
• Write your answers in the boxes provided.
• A calculator is required for this paper.
• A clean copy of the Physics Data Booklet is required for this paper.
• The maximum mark for this examination paper is [35 marks].

<table>
<thead>
<tr>
<th>Option</th>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option A — Relativity</td>
<td>4 – 5</td>
</tr>
<tr>
<td>Option B — Engineering physics</td>
<td>6 – 7</td>
</tr>
<tr>
<td>Option C — Imaging</td>
<td>8 – 9</td>
</tr>
<tr>
<td>Option D — Astrophysics</td>
<td>10 – 11</td>
</tr>
</tbody>
</table>
1. The speed of sound in air, \( v \), was measured at temperatures near 0°C. The graph shows the data and the line of best-fit. The error bars for temperature are too small to be shown.

A student suggests that the speed of sound \( v \) is related to the temperature \( \theta \) in degrees Celsius by the equation

\[
v = a + b\theta
\]

where \( a \) and \( b \) are constants.

(a) (i) Determine the value of the constant \( a \), correct to two significant figures. [1]

\[\text{[Your answer here]}\]
(Question 1 continued)

(ii) Estimate the absolute uncertainty in $b$. [3]

(iii) A student calculates that $b = 0.593 \text{ m s}^{-1} \text{ °C}^{-1}$. State, using your answer to (a)(ii), the value of $b$ to the correct number of significant figures. [1]

(b) (i) Estimate the temperature at which the speed of sound is zero. [1]

(ii) Explain, with reference to your answer in (b)(i), why the student’s suggestion is not valid. [2]
2. A student uses an electronic timer in an attempt to estimate the acceleration of free-fall $g$. She measures the time $t$ taken for a small metal ball to fall through a height $h$ of 0.50 m. The percentage uncertainty in the measurement of time is 0.3% and the percentage uncertainty height is 0.6%.

(a) Using $h = \frac{1}{2} gt^2$, calculate the expected percentage uncertainty in the value of $g$. [1]

(b) State and explain how the student could obtain a more reliable value for $g$. [3]
3. In an experiment to measure the specific heat capacity of a metal, a piece of metal is placed inside a container of boiling water at 100°C. The metal is then transferred into a calorimeter containing water at a temperature of 10°C. The final equilibrium temperature of the water was measured. One source of error in this experiment is that a small mass of boiling water will be transferred to the calorimeter along with the metal.

(a) Suggest the effect of the error on the measured value of the specific heat capacity of the metal. [2]

(b) State one other source of error for this experiment. [1]
SECTION B

Answer all of the questions from one of the options. Write your answers in the boxes provided.

Option A — Relativity

4. (a) Einstein discovered a discrepancy, related to the speed of light, between Maxwell’s equations of electromagnetism and Newtonian mechanics. Outline the discrepancy and how Einstein dealt with it. [2]

..............
..............
..............
..............

(Option A continues on the following page)
(Option A, question 4 continued)

(b) A proton enters a region of uniform magnetic field which is directed into the plane of the page as shown.

Reference frame \( S \) is at rest with respect to the magnetic field. The speed of the proton is measured to be \( v \) in \( S \).

(i) State the nature of the force on the proton according to an observer in \( S \). [1]

(ii) \( S' \) is a reference frame in which the proton is at rest. State and explain whether, according to an observer in \( S' \), there is a force on the proton. [2]

(Option A continues on the following page)
5. A rocket of proper length 900 m is moving at speed 0.80c relative to the Earth. E is a reference frame in which the Earth is at rest. R is a reference frame in which the rocket is at rest. The diagram is from the point of view of E.

(a) A light signal is emitted from the back of the rocket and is received at the front of the rocket.

Determine the

(i) time interval between the emission and reception of the light signal according to an observer in R. \[1\]

(ii) time interval between the emission and reception of the light signal according to an observer in E. \[3\]

\[\begin{align*}
\text{(Option A continues on the following page)}
\end{align*}\]
(Option A, question 5 continued)

(iii) distance separating the emission and reception of the light signal according to an observer in E. [1]
(Option A, question 5 continued)

(b) One photon is emitted from the back B of the rocket and another photon is emitted from the front F of the rocket, as shown.

The emissions are simultaneous according to observers in R. The photons are received by an observer at rest in the middle of the rocket.

The spacetime diagram represents the reference frame of the Earth E and the rocket frame R. The coordinates in frame E are $x$ and $ct$ and in frame R they are $x'$ and $ct'$. The position of the back B and of the front F of the rocket at $t' = 0$ are labelled. The origin of the axes corresponds to the middle of the rocket.

(i) On the spacetime diagram, draw lines to show the worldlines of the photons from when they were emitted to when they were received. [3]
(Option A, question 5 continued)

(ii) Using the spacetime diagram, determine which photon was emitted first according to observers in E.  

(iii) Determine the time separating the emissions of the two photons according to observers in E.  

(c) A missile is launched from the rocket. The velocity of the missile is \(-0.62c\) relative to the rocket. Calculate the velocity of the rocket relative to the Earth.  

End of Option A
Option B — Engineering physics

6. A bucket of mass $m$ is held above a water well by a rope of negligible mass, as shown. The rope is wound around a cylinder of mass $M$ and radius $R$. The moment of inertia of the cylinder about its axis is $I = \frac{1}{2} MR^2$.

The bucket is released from rest. Resistance forces may be ignored.

(a) Show that the acceleration $a$ of the bucket is given by the following equation.

\[ a = \frac{mg}{m + \frac{M}{2}}. \quad [4] \]
(Option B, question 6 continued)

(b) The following data are available.

\[
\begin{align*}
\text{Bucket mass } m &= 24 \text{ kg} \\
\text{Cylinder mass } M &= 36 \text{ kg} \\
\text{Radius } R &= 0.20 \text{ m}
\end{align*}
\]

(i) Calculate the speed of the bucket when it has fallen a distance of 16 m from rest. \[2\]

(ii) Calculate the rate of change of the angular momentum of the cylinder. \[3\]

(c) The bucket in (b) is filled with water so its total mass is now 45 kg. The bucket is raised at a constant speed of 2.0 m s\(^{-1}\) using an electric motor attached to the cylinder. Calculate the power output of the motor. \[1\]
7. The pressure volume ($pV$) diagram shows a cycle ABCA of a heat engine. The working substance of the engine is a fixed mass of an ideal gas.

The temperature of the gas at A is 400 K.

(a) Calculate the maximum temperature of the gas during the cycle. [1]

\[ \text{………………………………………………………………………………………………………………} \]

\[ \text{………………………………………………………………………………………………………………} \]

(Option B continues on the following page)
(Option B, question 7 continued)

(b) For the isobaric expansion AB, calculate the

(i) work done by the gas. \[2\]

(ii) change in the internal energy of the gas. \[1\]

(iii) thermal energy transferred to the gas. \[1\]

(Option B continues on the following page)
(Option B, question 7 continued)

(c) The work done on the gas during the isothermal compression is 1390 J. Determine the change in entropy of the gas for this compression.

(d) Determine the efficiency of the cycle ABCA.

(e) State whether the efficiency of a Carnot engine operating between the same temperatures as those operating in cycle ABCA on page 14, would be greater than, equal to, or less than the efficiency in (d).

End of Option B
Option C — Imaging

8. (a) The diagram shows a Cassegrain reflecting telescope consisting of a small diverging mirror $M_1$, a large converging mirror $M_2$, and a converging lens $L$. The focal point of $M_2$ is at $F$.

![Diagram of the telescope showing the mirrors and lens]

The telescope is used to view a planet. The diameter of the planet subtends an angle of $1.40 \times 10^{-4}$ rad at $M_2$. The focal length of $M_2$ is 9.50 m.

(i) Show that the diameter of the image of the planet that would be formed by $M_2$ alone is 1.33 mm. [3]

(... continued on next page)
(Option C, question 8 continued)

(ii) \( M_1 \) is at a distance of 8.57 m from the aperture of \( M_2 \). The image in (a)(i) now serves as a virtual object for \( M_1 \). A real image is formed at the opening of \( M_2 \). Show that the diameter of this image is 12.0 mm.

(iii) The real image in (a)(ii) is now viewed by \( L \) of focal length 98.0 mm. The final image of the planet is formed at infinity. Calculate the overall magnification of the telescope.
(Option C, question 8 continued)

(b) (i) The large concave mirror in most reflecting telescopes is parabolic rather than spherical. Suggest one reason for this. [1]

(ii) State one advantage of reflecting telescopes compared to refracting telescopes. [1]

(c) Telescopes available today include, in addition to optical telescopes, infrared, radio, ultraviolet and X-ray telescopes. Outline how the introduction of these telescopes has changed our view of the universe. [2]

(Option C continues on the following page)
9. (a) A compound microscope has an objective lens of focal length 0.40 cm and an eyepiece lens of focal length 3.20 cm. The image formed by the objective is 0.20 m from the objective lens. The final image is formed at a distance of 25 cm from the eyepiece lens.

(i) Show that the position of the object is $4.1 \times 10^{-3}$ m from the objective lens. [1]

(ii) Determine the angular magnification of the microscope. [2]

(iii) The smallest distance between two points that can be distinguished by an unaided human eye from a distance of 25 cm is approximately 0.1 mm. Calculate the smallest distance between two points that can be distinguished using this microscope. [1]

(Option C continues on the following page)
(Option C, question 9 continued)

(b) The images from the microscope are digitized and transmitted along an optic fibre. The input power of the signal is 120 mW and the attenuation per unit length of the optic fibre is 6.2 dB km\(^{-1}\). The length of the fibre is 4.6 km. Calculate the output power of the signal. [3]

End of Option C
Option D — Astrophysics

10. (a) State the element which is the end product of nuclear reactions taking place inside main sequence stars. [1]

(b) A main sequence star has apparent brightness $7.6 \times 10^{14}$ W m$^{-2}$ and luminosity $3.8 \times 10^{27}$ W.

(i) Calculate, in pc, the distance of the star from Earth. [3]

(ii) Suggest whether the stellar parallax method is appropriate for measuring the distance to this star. [1]

(iii) The luminosity of the star in (b) is ten times the luminosity of our Sun. Determine the ratio $\frac{M}{M_\odot}$ where $M_\odot$ is the mass of the Sun. [2]
(Option D, question 10 continued)

(c) The image shows a Hertzsprung–Russell (HR) diagram.
(Option D, question 10 continued)

(i) Estimate, using the HR diagram, the ratio \( \frac{R}{R_\odot} \) where \( R \) is the radius of the star in (b) and \( R_\odot \) is the radius of the Sun. \[3\]

(ii) Sketch a line on the HR diagram to show the evolutionary path of this star. \[2\]

(iii) Describe, with reference to the Chandrasekhar limit, the equilibrium state of this star in its final evolutionary stage. \[2\]

(Option D continues on the following page)
11. (a) The hydrogen spectrum from a laboratory source includes a line of wavelength 434 nm. The same line emitted from a distant galaxy has wavelength 502 nm when observed on Earth.

(i) Suggest why the two wavelengths are different.  

(ii) Determine the distance, in Mpc, from this galaxy to Earth using a Hubble constant of 71 km s\(^{-1}\) Mpc\(^{-1}\).
(Option D, question 11 continued)

(b) In the 1990s, two research groups started projects involving observations of distant supernovae. They aimed to show that distant galaxies were slowing down.

(i) Suggest why it was expected that distant galaxies would be slowing down. [1]

(ii) Describe how it was deduced that the universe is expanding at an accelerated rate. [2]

End of Option D
Please do not write on this page.

Answers written on this page will not be marked.
General Marking Instructions

Subject Details: Physics SL Paper 3 Markscheme

Mark Allocation

Candidates are required to answer ALL questions in Section A [15 marks] and all questions from ONE option in Section B [20 marks].

Maximum total = [35 marks].

Markscheme format example:

<table>
<thead>
<tr>
<th>Question</th>
<th>Answers</th>
<th>Notes</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. b ii</td>
<td>the displacement and acceleration ✓ are in opposite directions ✓</td>
<td>Accept force for acceleration</td>
<td>2</td>
</tr>
</tbody>
</table>

1. Each row in the “Question” column relates to the smallest subpart of the question.
2. The maximum mark for each question subpart is indicated in the “Total” column.
3. Each marking point in the “Answers” column is shown by means of a tick (✓) at the end of the marking point.
4. A question subpart may have more marking points than the total allows. This will be indicated by “max” written after the mark in the “Total” column. The related rubric, if necessary, will be outlined in the “Notes” column.
5. An alternative wording is indicated in the “Answers” column by a slash (/). Either wording can be accepted.
6. An alternative answer is indicated in the “Answers” column by “OR” on the line between the alternatives. Either answer can be accepted.
7. Words in angled brackets ⟨ ⟩ in the “Answers” column are not necessary to gain the mark.
8. Words that are underlined are essential for the mark.
9. The order of marking points does not have to be as in the “Answers” column, unless stated otherwise in the “Notes” column.
10. If the candidate’s answer has the same “meaning” or can be clearly interpreted as being of equivalent significance, detail and validity as that in the “Answers” column then award the mark. Where this point is considered to be particularly relevant in a question it is emphasized by OWTTE (or words to that effect) in the “Notes” column.
11. Remember that many candidates are writing in a second language. Effective communication is more important than grammatical accuracy.
12. Occasionally, a part of a question may require an answer that is required for subsequent marking points. If an error is made in the first marking point then it should be penalized. However, if the incorrect answer is used correctly in subsequent marking points then follow through marks should be awarded. When marking, indicate this by adding ECF (error carried forward) on the script. “ECF acceptable” will be displayed in the “Notes” column.

13. Do not penalize candidates for errors in units or significant figures, unless it is specifically referred to in the “Notes” column.
<table>
<thead>
<tr>
<th>Question</th>
<th>Answers</th>
<th>Notes</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. a i</td>
<td>( a = 330 \text{ ms}^{-1} ) ✓</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>a ii</td>
<td>( b_{\text{max}} = \left( \frac{344 - 316}{40} \right) = 0.70 \text{ ms}^{-1}\text{°C}^{-1} ) ✓</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>( b_{\text{min}} = \left( \frac{340 - 318}{40} \right) = 0.55 \text{ ms}^{-1}\text{°C}^{-1} ) ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>( \Delta b = \left( \frac{0.70 - 0.55}{2} \right) = 0.075 \approx 0.08 \text{ ms}^{-1}\text{°C}^{-1} ) ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a iii</td>
<td>( b = 0.59 \pm (0.08) \text{ ms}^{-1}\text{°C}^{-1} ) ✓</td>
<td>Allow 0.593 (±0.075).</td>
<td>1</td>
</tr>
<tr>
<td>b i</td>
<td>( \theta = \left( \frac{-330}{0.6} \right) = -550 \text{°C} ) ✓</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
| b ii     | temperature is unphysical  
\( \text{OR} \)  
there is no temperature below \(-273\text{°C} \)  
\( \text{OR} \)  
this temperature cannot be right ✓  
it appears that the linear fit model cannot be extrapolated far from 0°C ✓ | | 2 |
<table>
<thead>
<tr>
<th>Question</th>
<th>Answers</th>
<th>Notes</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. a</td>
<td>the estimated percentage uncertainty in ( g ) is ( 2 \times 0.3 + 0.6 ) = 1% ✓</td>
<td>Accept 1.2 %.</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>use more than one height ✓</td>
<td>Allow ( h ) versus ( t^2 ) or ( \sqrt{h} ) versus ( t ) or ( \log h ) versus ( \log t ). Analysis of ( g ) must fit quoted graph.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>obtain ( g ) from a suitable graph &lt;of height ( h ) versus ( t^2 ) &gt; ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>( g ) is twice the gradient ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>( OR )</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>use a smaller ball &lt;to reduce air resistance&gt; ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>use a &lt;much&gt; larger height ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>repeat many times &lt;to get an average of time&gt; ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. a</td>
<td>the actual specific heat capacity will be less than calculated value ✓</td>
<td>Do not allow a bald answer.</td>
<td>2</td>
</tr>
<tr>
<td>b</td>
<td>metal may not have been heated uniformly ( OR )</td>
<td></td>
<td>1 max</td>
</tr>
<tr>
<td></td>
<td>metal may not all be at 100 °C ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>energy was lost to air during the transfer ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>energy may have been lost to the air through the calorimeter ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>water may not be at uniform temperature ✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
# SECTION B

## Option A — Relativity

<table>
<thead>
<tr>
<th>Question</th>
<th>Answers</th>
<th>Notes</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. a i</td>
<td>Maxwell’s equations implied a speed of light independent of its source <strong>OR</strong> in Newtonian mechanics, speed of light depends on velocity of source ✓</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Einstein trusted Maxwell’s equations <strong>OR</strong> Einstein modified Newtonian mechanics ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b i</td>
<td>magnetic ✓</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>b ii</td>
<td>if a force exists in one <strong>inertial</strong> frame a force must exist in any other <strong>inertial</strong> frame ✓</td>
<td>Accept discussion in terms of acceleration as equivalent to force. Accept an answer in terms of electric field.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cannot be magnetic because the proton is at rest in $S'$ ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. a i</td>
<td>$\left\langle \frac{900}{c} \right\rangle \Rightarrow 3.0 \times 10^{-6} , \langle s \rangle$ ✓</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>a ii</td>
<td>$\gamma = \left\langle \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \right\rangle = \frac{2}{3} \approx 1.67$ ✓</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\Delta t = \left\langle \gamma \left[ \Delta t' + \frac{\gamma \Delta x'}{c^2} \right] \right\rangle = \frac{2}{3} \left[ 3.0 \times 10^{-6} + \frac{0.80 c \times 900}{c^2} \right]$ ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$= 9.0 \times 10^{-6} , \left\langle s \right\rangle$ ✓</td>
<td>(continued...)</td>
<td></td>
</tr>
</tbody>
</table>
(Question 5 continued)

<table>
<thead>
<tr>
<th>Question</th>
<th>Answers</th>
<th>Notes</th>
<th>Total</th>
</tr>
</thead>
</table>
| a iii    | $\Delta x = \langle c't = 3.0 \times 10^8 \times 9.0 \times 10^{-6} = \rangle 2700 \langle m \rangle$

**OR**

$\Delta x = \gamma [\Delta x' + v \Delta t'] = \frac{5}{3} \left[ 900 + 0.80c \times \frac{900}{c} \right] = \longrightarrow 2700 \langle m \rangle \checkmark$

| b i      | ![Diagram](image.png) starting points at B and F ✓
end at the same point on the $c't$ axis ✓
correct slope $45^\circ$ degrees ✓

*Judge by eye.*

(continued...)
(Question 5 continued)

<table>
<thead>
<tr>
<th>Question</th>
<th>Answers</th>
<th>Notes</th>
<th>Total</th>
</tr>
</thead>
</table>
| b ii     | ![Diagram](image-url)  
lines through B and F parallel to x-axis ✓
to see that B happened first ✓  
\[ \Delta t = \gamma \left[ \Delta t' + \frac{\nu \Delta x'}{c^2} \right] \rightarrow \frac{5}{3} \left[ 0 + \frac{0.80c \times [900]}{c^2} \right] ✓
\[ \Delta t = 4.0 \times 10^{-6} \text{ s} \ ✓
|         |         |       | 2     |
| b iii    | ![Diagram](image-url)  
solving for u ✓
correct substitution ✓
correct answer of 0.36c ✓ |       | 2     |
| c        |         |       | 3     |
Option B — Engineering physics

<table>
<thead>
<tr>
<th>Question</th>
<th>Answers</th>
<th>Notes</th>
<th>Total</th>
</tr>
</thead>
</table>
| 6. a     | $\alpha = \frac{a}{R}$ ✓
        | $T \times R = \frac{1}{2} MR^2 \frac{a}{R}$ ✓
        | $mg - T = ma$ ✓
        | <add equations/eliminate tension> to get $mg = ma + \frac{1}{2} Ma$ ✓ |
| b i     | $a = \frac{24 \times 9.8}{24 + \frac{36}{2}} \Rightarrow 5.6 \langle \text{m s}^{-2} \rangle$ ✓
        | $v = \sqrt{2as} = \sqrt{2 \times 5.6 \times 16} \Rightarrow 13.4 \approx 13 \langle \text{m s}^{-1} \rangle$ ✓
        | OR
        | $mgh = \frac{1}{2} mv^2 + \frac{1}{2} I^2 \omega^2$
        | OR
        | $mgh = \frac{1}{2} mv^2 + \frac{1}{2} I \frac{v^2}{R^2}$ ✓
        | $v = \sqrt{\frac{2 \times 24 \times 9.8 \times 16}{24 + 18}} \Rightarrow 13.4 \approx 13 \langle \text{m s}^{-1} \rangle$ ✓ |

Award [2] for a bald correct answer.
(Question 6 continued)

<table>
<thead>
<tr>
<th>Question</th>
<th>Answers</th>
<th>Notes</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>b ii</td>
<td>rate of change of $L$ is $I\alpha = \frac{a}{R}$ ✓</td>
<td>Award [3] for a bald correct answer.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\left( \frac{1}{2} MR^2 \frac{a}{R} = \right) \frac{1}{2} \times 36 \times 0.20 \times \frac{24 \times 9.8}{24 + \frac{36}{2}}$ ✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>= 20.2 ≈ 20 N m ✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>rate of change of $L$ is $\Gamma \langle\text{torque on axle}\rangle$ ✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\Gamma = TR = \frac{1}{2} \times 36 \times \frac{24 \times 9.8}{24 + \frac{36}{2}}$ ✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>= 20.2 ≈ 20 N m ✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>$\langle P = 45 \times 9.8 \times 2.0 \rangle = 882 \approx 880 \langle W \rangle$ ✓</td>
<td>✓</td>
<td>1</td>
</tr>
<tr>
<td>Question</td>
<td>Answers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. a</td>
<td>( \text{maximum is at B and so } T_B = \frac{400 \times 8}{2} \Rightarrow 1600 \text{ K} ) ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b i</td>
<td>( W = \left&lt; p \Delta V \right&gt; = 5.0 \times 10^5 \times [8.0 - 2.0] \times 10^{-3} ) ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>( W = 3.0 \times 10^3 \left&lt; J \right&gt; ) ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b ii</td>
<td>( \Delta U = \left&lt; \frac{3}{2} p \Delta V \right&gt; = \frac{3}{2} \times 3.0 \times 10^3 \Rightarrow 4.5 \times 10^3 \left&lt; J \right&gt; ) ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b iii</td>
<td>( Q = \left&lt; \Delta U + W \right&gt; = 3.0 \times 10^3 + 4.5 \times 10^3 \Rightarrow 7.5 \times 10^3 \left&lt; J \right&gt; ) ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>( \Delta S = \frac{Q}{T} = -\frac{1390}{400} ) ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>( \Delta S = -3.48 \approx -3.5 \left&lt; \text{JK}^{-1} \right&gt; ) ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>( e = \frac{3000 - 1390}{7500} ) ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>( e = 0.21 ) ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>greater ✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Award [2] for a bald correct answer.
- Award [1] for a bald correct answer.
- Award [1 max] for omitted minus sign.
- Award [2] for a bald correct answer.

Total:
- 1
- 2
- 1
- 2
- 2
- 1
### Option C — Imaging

<table>
<thead>
<tr>
<th>Question</th>
<th>Answers</th>
<th>Notes</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>8. a i</strong></td>
<td>the image would be formed at the focal point of the concave mirror&lt;br&gt;<em>OR</em>&lt;br&gt;at a distance of 9.50 m from the centre of the concave mirror &lt;i&gt;since the object distance is very large&lt;/i&gt; ✓&lt;br&gt;&lt;br&gt;$\left( - \right) \frac{9.50}{u} = \frac{D_i}{D_o}$ ✓&lt;br&gt;&lt;br&gt;$D_i = 9.50 \times \frac{D_o}{u} = 9.50 \times \theta = 9.50 \times 1.40 \times 10^{-4}$ ✓&lt;br&gt;&lt;br&gt;$= 0.00133 \langle m \rangle$</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td><strong>a ii</strong></td>
<td>the object distance is $-\left[ 9.50 - 8.57 \right] = -0.93 \langle m \rangle$ ✓&lt;br&gt;so the magnification is $\frac{8.57}{0.93} = 9.215$ ✓&lt;br&gt;the diameter of this image is then $9.215 \times 0.00133 = 0.012256 \langle m \rangle$ ✓</td>
<td>&lt;i&gt;Ignore incorrect sign.&lt;/i&gt;</td>
<td>3</td>
</tr>
<tr>
<td><strong>a iii</strong></td>
<td>angle: $\frac{12.3 \langle mm \rangle}{98.0 \langle mm \rangle} = 0.126 \langle rad \rangle$ ✓&lt;br&gt;magnification: $\frac{0.126}{1.40 \times 10^{-3}}$ ✓&lt;br&gt;$= 900$ ✓</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td><strong>b i</strong></td>
<td>with parabolic mirrors the problem of spherical aberration is eliminated ✓</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

(continued...)
### Question 8 continued

<table>
<thead>
<tr>
<th>Question</th>
<th>Answers</th>
<th>Notes</th>
<th>Total</th>
</tr>
</thead>
</table>
| b ii     | no chromatic aberration ✓  
easier/cheaper to make large mirrors than large lenses ✓  
easier to support and so can be large ✓  
less absorption in glass ✓ |       | 1 max |
| c        | a multitude of sources of EM radiation other than visible light have been discovered  
comparison of optical and non-optical images can be made ✓  
thus vastly increasing our understanding of what exists in the universe ✓ |       | 2     |

### Question 9

| a i     | \[
\frac{1}{u} = \frac{1}{f} - \frac{1}{v} = \frac{1}{0.40 \times 10^{-2}} - \frac{1}{20 \times 10^{-2}} ✓
\] |       | 1     |
|---------|------------------------------------------------------------------------|-------|-------|
| a ii    | \[
M = \left( -\frac{v}{u} \times \frac{D}{f_e} \right) = \frac{0.20}{4.1 \times 10^{-3}} \times \frac{0.25}{3.2 \times 10^{-2}} ✓
\]  
\[
M = 382.8 \approx 380 ✓
\] |       | 2     |
| a iii   | \[
\frac{0.1 \text{ mm}}{380} \approx 260 \text{ nm} ✓
\] |       | 1     |
| b       | attenuation = \(4.6 \times 6.2 = 28.5\) dB ✓  
\(p = 120 \times 10^{-2.85} ✓
\]  
\[
\text{power} = 0.17 \text{ mW} ✓
\] |       | 3     |
### Option D — Astrophysics

<table>
<thead>
<tr>
<th>Question</th>
<th>Answers</th>
<th>Notes</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. a</td>
<td>helium ✓</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>i</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$d = \sqrt{\frac{3.8 \times 10^27}{4\pi \times 7.6 \times 10^{-15}}} ✓$ ✓</td>
<td>Award [3] for a bald correct answer.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>$d = 6.3 \times 10^9 \text{ m} ✓$ ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$d = 2000 \text{ pc} ✓$ ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>ii</td>
<td>no, the distance is too great for the parallax angle to be measured accurately (even from an orbiting telescope) ✓</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>iii</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\left(\frac{M}{M_\odot}\right)^{3.5} = 10 ✓$ ✓</td>
<td>Award [2] for a bald correct answer.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>$\frac{M}{M_\odot} = 10 \Rightarrow 1.93 \approx 2 ✓$ ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>i</td>
<td>estimates of temperatures for star as $7500 (\pm 200) \text{ K}$ ✓ and Sun as $6000 \text{ K}$ ✓</td>
<td>Accept answers in the range of 1.9 to 2.1.</td>
</tr>
<tr>
<td></td>
<td>$10 = \frac{\sigma 4\pi R^2 7500^4}{\sigma 4\pi R_\odot^2 6000^4 ✓} ✓$ ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\frac{R}{R_\odot} \approx 2 ✓$ ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>ii</td>
<td>line starting at correct position [$T = 7500 \text{ K}, L = 10$] and extending into red giants ✓</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>ending at white dwarfs ✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued...)

(Question 10 continued)

<table>
<thead>
<tr>
<th>Question</th>
<th>Answers</th>
<th>Notes</th>
<th>Total</th>
</tr>
</thead>
</table>
| c iii    | equilibrium between gravitational pressure and electron degeneracy pressure ✓
|          | provided final mass is below the Chandrasekhar limit/less than 1.4 $M_\odot$ ✓ | | 2 |

11. a i  the universe is expanding and so wavelengths (like all distances) are being stretched out

or  

wavelength increasing hence the Doppler redshift is being observed ✓  

Must mention redshift in alternative answer.  

a ii  

\[
< z = \frac{v}{c} \Rightarrow v = 0.157 \times 3.0 \times 10^8 = 4.7 \times 10^4 \text{ km s}^{-1} \]

✓  

\[
d = \left( \frac{v}{H} = \frac{4.7 \times 10^4}{71} \right) \Rightarrow 660 \text{ Mpc} \]

✓  

Award [2] for a bald correct answer.  

b i  gravity is pulling back on the galaxies ✓  

1  

b ii  distant supernovae appeared less bright than expected ✓ 

indicating that they were further away than expected ✓  

2